

RF Status of ALBA

ESLS RF Meeting – Delta/Dortmund – Sept 2014

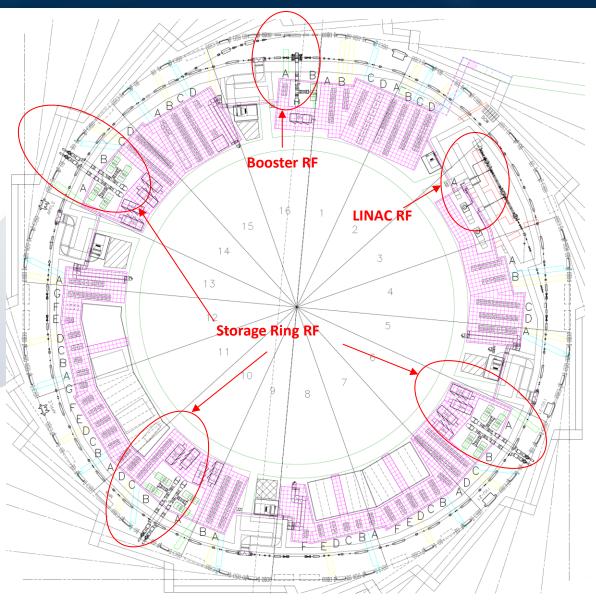
Angela Salom on behalf of RF team: Francis Perez, Bea Bravo and Jesus Ocampo

Outline

- ✓ ALBA RF Overview: Booster and SR
- ✓ Main ALBA Upgrades
- ✓ RF Operation with beam
 - Statistics of RF operation
 - IOTs Status
 - RF Incidents
- ✓ RF Upgrades:
 - Feedforward loops
 - RF lab
- ✓ Future RF Upgrades:
 - New IOT tubes from L3
 - Active 3rd Harmonic Cavity

RF at ALBA Overview

Linac


- 2 Klystrons + WG
 system + travelling
 wave cavities at 3Ghz
- 90keV to 100MeV

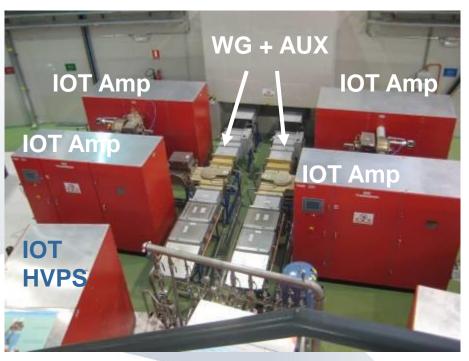
Booster

- IOT + WG System + 5cell cavity @ 500MHz
- 100MeV to 3GeV


• SR

- 12 IOTs + WG system +
 6 cavities @ 500MHz
- Beam stored @ 3GeV

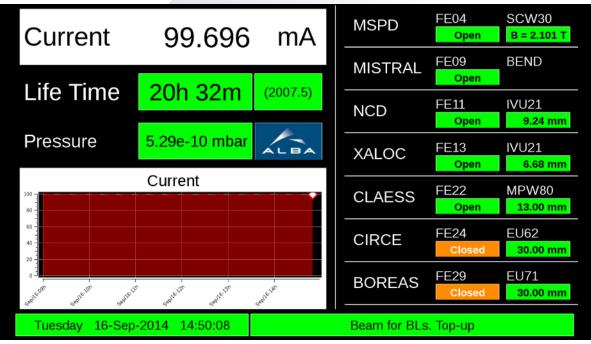
BOOSTER RF


Tunnel: 5Cell Cavity – 500MHz

SR RF

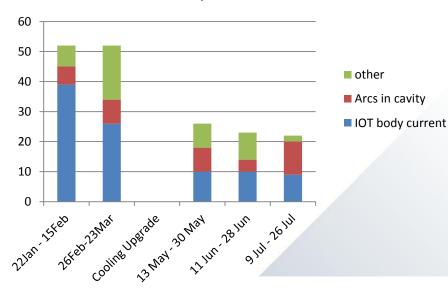
Tunnel: Dampy Cavities 1Cell – 500MHz

Service Area: RF amplifier + Auxiliaries



Main ALBA Upgrades

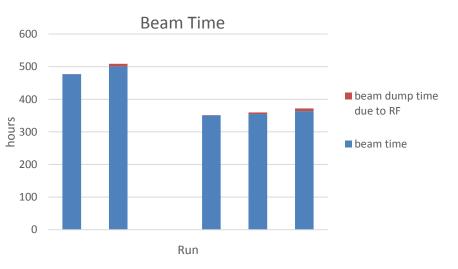
✓ Cooling Upgrade


- More diagnostics: pressure and water flow meters
- Alarms management
- Air releasers
- Filters in main manifolds and Power Supplies

✓ Fast Orbit Feedback and Top-up since July 2014

RF statistics of 3rd year operation

RF Interlocks per run



 Main improvement from last year: no water cooling interlocks

 Not all interlocks produced beam loss

Number of interlocks decreasing

 Main drawback: number of beam losses due to RF ITCKs increasing

Run #	RF Failures producing beam dump (%)	Total beam hours	Downtime due to RF failures (h)
1	3.8%	476.8	0.6
2	15.4%	500.7	8
3	11.54%	350	1
4	39.13%	354.8	4.5
5	54.54%	363.4	8.3

✓ Last runs working with 10 IOTs

RF Status of ALBA – ESLS RF Meeting – September 2014

Statistics of Broken IOTs

✓ 6 IOTs got broken during last 12 months (3 of them brand new)

SN	SAT Date	Date Broken	FIL Hours	HV Hours	Comments
617551	30/07/2010	18/06/2014	16622	12006	broken after body current in tx03
620408	17/09/2010	12/02/2014	18257	13250	Broken after several consecutive body currents
634238	23/09/2011	19/07/2014	18979	15713	Broken after body current at 45kW
723734	25/10/2013	29/10/2013			IOT broken due to wrong manufacturing process of the ceramic. Reimbursed by Thales
747014	01/08/2013	20/08/2013			Vacuum seal not good. Returned to Thales
761523	27/04/2014	12/07/2014	1694	1482	Broken after body current working at 60kW CW – to be reimbursed by Thales

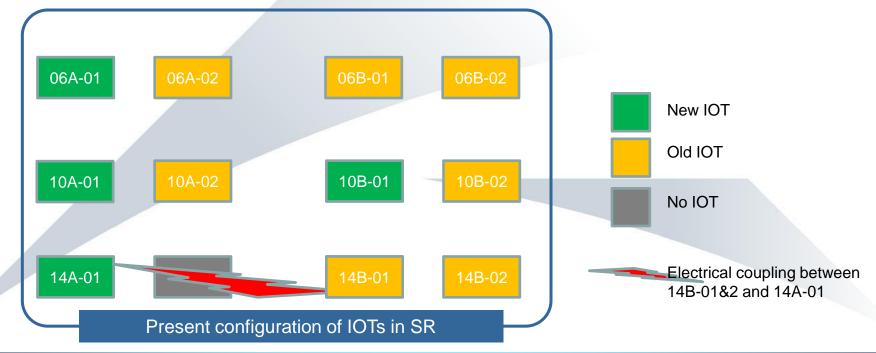
✓ Overall broken IOTs since 2010: 16

IOT average life: FIL ~ 7950h, HV ~ 5800h
IOT average life disregarding infant mortality: FIL ~ 12000h, HV ~ 8800h

Status of Active IOTs

✓ 11 Active IOTs in SR

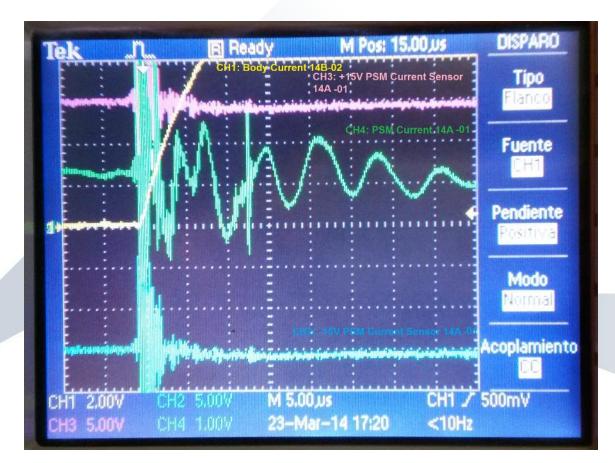
- IOT average: FIL ~ 10125h, HV ~ 7700h
- IOT average power: 30kW at 100mA


				Summary IOTs	Transmitters Logs Re	ports	- 2
s running at	10kW ma	x to avoid bo	dy curr	ent ITCKs			
ummary							
IOT Name	Last TX	Serial number	Status	Total HV hours	Total filament hou	rs HV > 150hrs.	HV > 2000hr
ALBA_IOT_002	TX14	499443	Active	16771.00	23218.00	0	0
ALBA_IOT_008	TX08	617302	Active	16473.00	21344.00	0	0
ALBA_IOT_009	TX13	617549	Active	16185.00	21373.00	0	0
ALBA_IOT_012	TX05	623096	Active	13536.00	20278.00	0	0
ALBA_IOT_021	TX06	720105	Active	9921.00	11938.00	0	•
ALBA_IOT_022	TX10	731330	Active	7995.00	9600.00	0	•
ALBA_IOT_026	TX04	747211	Active	6001.00	7051.00	0	0
ALBA_IOT_027	TX11	758883	Active	2809.00	3078.00	0	0
ALBA_IOT_029	TX02	760354	Active	1379.00	1619.00	0	
ALBA_IOT_028	TX03	759044	Active	716.00	744.00	0	0
ALBA_IOT_031	TX09	762037	Active	528.00	642.00	0	0
		766836	Active	463.00	617.00	•	•
ALBA_IOT_032	TX07	/00030	ACTIVE	405.00	017.00		

RF Incidents: Electrial coupling

✓ Electrical coupling between IOTs of Sector 14:

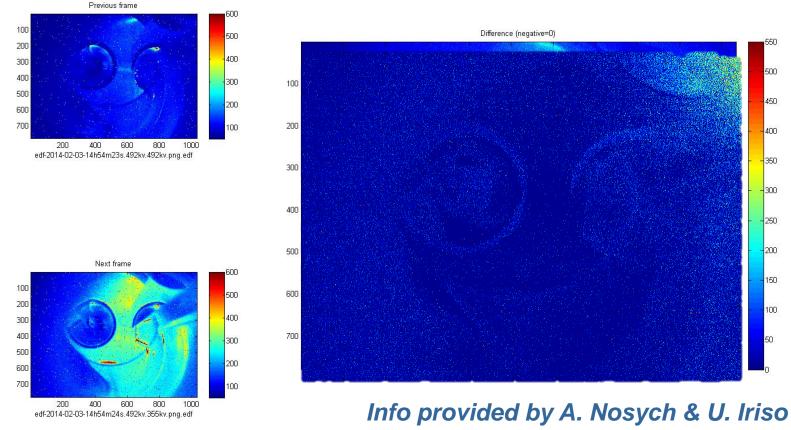
- When body current in IOTs 14B-01 or 14B-02, noise induced in current sensor of HVPS of IOT 14A-01
- Ferrites added to sensor
- EMI Filters installed
- Grounding improvements



RF Status of ALBA – ESLS RF Meeting – September 2014

✓ Electrical coupling between IOTs of Sector 14:

 Scope connected to current sensor of 14A-01 and trigger by body current of 14B-01



Arcs in cavity 06B

✓ In Easter 2013 absorber of sector 06 replaced

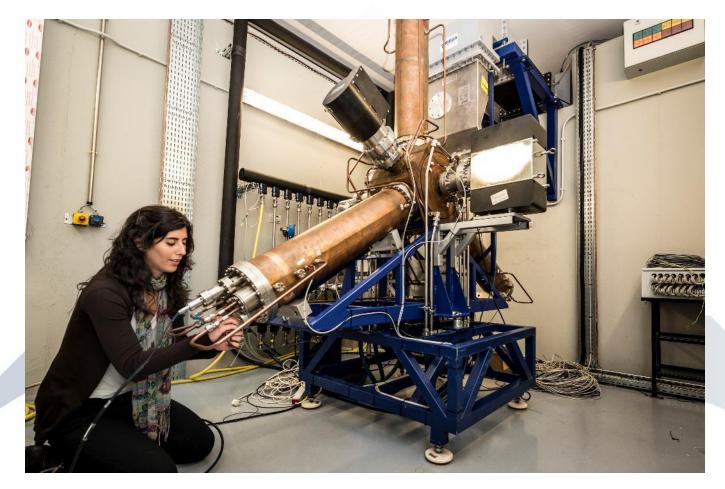
- Arcs in cavity 06B when voltage > 350kV for a year already
- Several conditioning process, but problem persists
- CCD camera installed in cavity view port to "catch" arcs. Not easy since there is always light due to coherent second emission

RF Status of ALBA – ESLS RF Meeting – September 2014

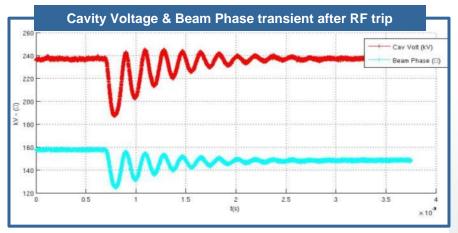
Other **RF** Incidents

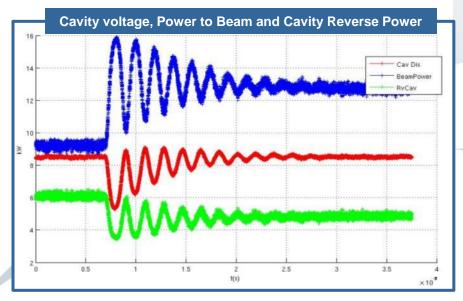
✓ Predrivers: SSA

- Thermal phase drift
- Gain jumps
- More diagnostics added to SSA output to be able to detect problems faster


✓ Circulators coils short-circuit

Capton added between coils and circulator body


High Power RF lab in operation since 2014


- ✓ To be used for IOTs and Cavities conditioning and general RF equipment tests
- ✓ Agreement signed with CIEMAT lab for conditioning of Cavities for other accelerators

ALBA RF upgrades: Feed-Forward Loops

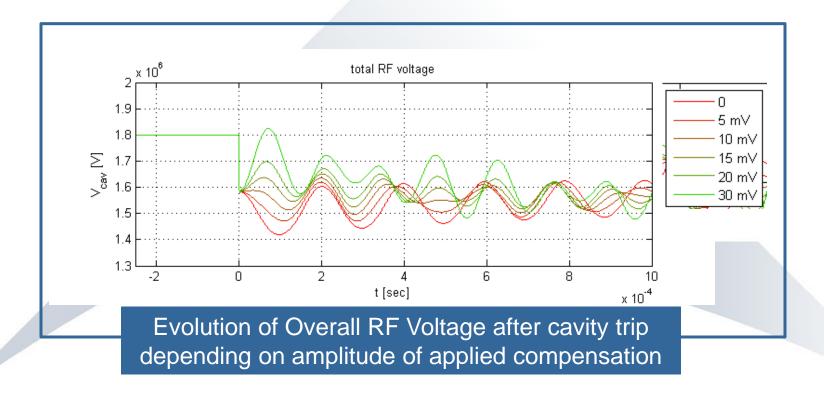
Feedforward loop to compensate transient when RF cavity trips

✓When cavity trips

- Cavity Voltage oscillates with frequency equal to synchrotron tune
- Transient time equal to damping time of machine

✓ Compensation

- Amplitude modulation triggered when one cavity trips
- Frequency, amplitude and phase of modulation are adjustable parameters


✓ Tests with beam:

- Adjustment of frequency very critical
- First ripple of perturbation reduced but following ones increased

RF upgrades: Feed-Forward Loops

Simulations run by Jordi Marcos to optimize parameters of compensation

- Overall voltage 1.8MV and 0.2MV suddenly lost (cavity trip)
- With an active compensation equal to 10% of the lost voltage ripples get reduced

Future RF Upgrades

✓ New tubes from L3:

- Contract signed in June 2014
- First prototype to be tested in RF lab in January 2015
- 4 IOTs to be installed in SR in August 2015

✓ Third Harmonic Cavity

- CLIC Collaboration to develop 1.5GHz RF system between CELLS and CERN
- To be used as an RF accelerator system in CLIC
- To be used as third harmonic cavity in CELLS
- Further details in B. Bravo presentation

Summary & Conclusions

- ✓ IOTs body current interlocks still main source of problems of RF
- ✓ With new RF lab bad IOTs will be long term conditioned. We have observed better behavior after high-potting and conditioning
- ✓ Expected better statistics with new IOTs
- ✓ Still adding improvements to RF systems

Acknowledgments

✓ RF team: Francis Perez, Bea Bravo, Jesus Ocampo and Pol Solans.
 ✓ Diagnostics and IDs: Andriy Nosich, Ubaldo Iriso and Jordi Marcos
 ✓ Operators, technicians and controls support

Thanks for your attention